If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y+2y^2=20
We move all terms to the left:
6y+2y^2-(20)=0
a = 2; b = 6; c = -20;
Δ = b2-4ac
Δ = 62-4·2·(-20)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-14}{2*2}=\frac{-20}{4} =-5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+14}{2*2}=\frac{8}{4} =2 $
| 9.5w=-57 | | -82=8x | | 14p–12p=20 | | 3(x+1)=-10 | | 18+10x-7x=9x-6 | | -8(2n-3)-8=-6n+26 | | 3(d-52)=84 | | 3.5y=-59.5 | | 17–3t=11 | | 3(d–52)=84 | | -4p+8=4 | | 40=8(h-89)= | | -4n=400 | | 5x=2x–6 | | 22–12k=–14 | | 7p–5p=18 | | 1/2(x−8)=14+5x | | 6-9x=7x-10x=18 | | 3v-15=6 | | 12(4+7p)=4(8p+12) | | 21-4d=13 | | 4x+20+9x-105=180 | | 12(x−8)=14+5x | | 3x+9=252 | | 21–4d=13 | | 13w–10w=15 | | 5x+7x-21=42-9x | | 7w=−42 | | 2m-2m+2=1+m+8 | | w/4–1=2 | | 15k–10k=20 | | 8u+2u=20 |